Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.18.549530

ABSTRACT

The rapid evolution of SARS-CoV-2 to variants with improved transmission efficiency and reduced sensitivity to vaccine-induced humoral immunity has abolished the protective effect of licensed therapeutic human monoclonal antibodies (mAbs). To fill this unmet medical need and protect vulnerable patient populations, we isolated the P4J15 mAb from a previously infected, vaccinated donor, with <20 ng/ml neutralizing activity against all Omicron variants including the latest XBB.2.3 and EG.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ~93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. Although SARS-CoV-2 mutants escaping neutralization by P4J15 were selected in vitro, these displayed lower infectivity, poor binding to ACE2, and the corresponding "escape" mutations are accordingly rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, we show that P4J15 confers complete prophylactic protection. We conclude that the P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug.

2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2860422.v1

ABSTRACT

SARS-CoV-2 infection requires Spike protein mediating fusion between the viral and cellular membranes. The fusogenic activity of Spike requires its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zddhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino–acid-long N-terminally extended protein with 37-times higher Spike acylating activity, leading to enhanced viral infectivity. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to generate more infectious viruses.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19 , Colitis
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.15.537011

ABSTRACT

SARS-CoV-2 infection requires Spike protein mediating fusion between the viral and cellular membranes. The fusogenic activity of Spike requires its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zddhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino-acid-long N-terminally extended protein with 37-times higher Spike acylating activity, leading to enhanced viral infectivity. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to generate more infectious viruses.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19 , Colitis
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.19.504450

ABSTRACT

Investigation of potential hosts of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is crucial to understanding future risks of spillover and spillback. SARS-CoV-2 has been reported to be transmitted from humans to various animals after requiring relatively few mutations. Mice are well adapted to human environments, frequently come in contact with humans, are used widely as infection models, and may act as reservoirs for SARS-CoV-2. Structural and binding data of the mouse ACE2 receptor with the Spike protein of newly identified SARS-CoV-2 variants are needed to better understand the impact of variants of concern (VOC). Previous studies have developed mouse-adapted variants and have identified some determinants of binding. Here we report the cryo-EM structures of mouse ACE2 bound to Spike ectodomains of four different VOC: Beta, Omicron BA.1, Omicron BA.2.12.1 and Omicron BA.4/5. These variants represent the oldest to the newest variants that are able to bind the mouse ACE2 receptor. Our high-resolution structural data complemented with bio-layer interferometry (BLI) binding assays reveal a requirement for a combination of mutations in the Spike protein to enable the binding to mouse ACE2.


Subject(s)
Coronavirus Infections
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.27.22278126

ABSTRACT

ABSTRACT Background More than two years into the COVID-19 pandemic, it is generally assumed that most of the population has developed anti-SARS-CoV-2 antibodies from infection and/or vaccination. However, public health decision-making is hindered by the lack of up-to-date and precise characterization of the immune landscape in the population. We thus aimed to estimate anti-SARS-CoV-2 antibodies seroprevalence and cross-variant neutralization capacity after Omicron became dominant in Geneva, Switzerland. Methods We conducted a population-based serosurvey between April 29 th and June 9 th , 2022, recruiting children and adults of all ages from age-stratified random samples of the Geneva general population. Anti-SARS-CoV-2 antibody presence was assessed using commercial immunoassays targeting either the spike (S) or nucleocapsid (N) protein. Antibodies neutralization capacity against different SARS-CoV-2 variants was evaluated using a cell-free Spike trimer-ACE2 binding-based surrogate neutralization assay. Seroprevalence of anti-SARS-CoV-2 antibodies and neutralization capacity were estimated using Bayesian modeling frameworks accounting for the demographics, vaccination, and infection statuses of the Geneva population. Results Among the 2521 individuals included in the analysis (55.2% women; 21.4% aged <18 years and 14.2% aged ≥ 65 years), overall seroprevalence of antibodies was 93.8% (95% credible interval: 93.1-94.5), including 72.4% (70.0-74.7) for infection-induced antibodies. Estimates of neutralizing antibodies based on a representative subsample of 1160 participants ranged from 79.5% (77.1-81.8) against the Alpha variant to 46.7% (43.0-50.4) against the Omicron BA.4/BA.5 subvariants. Despite having high seroprevalence of infection-induced antibodies (76.7% [69.7-83.0] for ages 0-5 years, 90.5% [86.5-94.1] for ages 6-11 years), children aged <12 years had substantially lower neutralizing activity than older participants, particularly against Omicron subvariants. In general, higher levels of neutralization activity against pre-Omicron variants were associated with vaccination, particularly having received a booster dose. Higher levels of neutralization activity against Omicron subvariants were associated with booster vaccination alongside recent infection. Conclusion More than nine in ten individuals in the Geneva population have developed anti-SARS-CoV-2 antibodies through vaccination and/or infection, but less than half of the population has antibodies with neutralizing activity against the currently circulating Omicron BA.5 subvariant. Hybrid immunity obtained through booster vaccination and infection appears to confer the greatest neutralization capacity, including against Omicron.


Subject(s)
COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.28.501852

ABSTRACT

The rapid evolution of SARS-CoV-2 has led to a severe attrition of the pool of monoclonal antibodies still available for COVID-19 prophylaxis or treatment. Omicron subvariants notably escape most antibodies developed so far, with Bebtelovimab last amongst clinically approved therapeutic antibodies to display still good activity against all of them including the currently dominant BA.4/BA.5. We recently described P2G3, a broadly active SARS-CoV-2 monoclonal antibody, which targets a region of Spike partly overlapping with the site recognized by Bebtelovimab. Here, we reveal that P2G3 efficiently neutralizes SARS-CoV-2 omicron subvariants including BA.4/BA.5. We further demonstrate that P2G3 neutralizes Omicron BA.2 and BA.4 mutants escaping Bebtelovimab blockade, whereas the converse is not true. Funding EU COVICIS program; private foundation advised by CARIGEST SA.


Subject(s)
COVID-19
7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.16.496402

ABSTRACT

Physical interactions between proteins are essential for most biological processes governing life. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic, and structural data grows. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction (PPI) networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications. We exploit a geometric deep learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features critical to drive PPIs. We hypothesized these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof-of-principle, we computationally designed four de novo protein binders to engage three protein targets: SARS-CoV-2 spike, PD-1, and PD-L1. The designs bound the target sites with nanomolar affinity upon experimental optimization, structural and mutational characterization showed highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling a novel approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.

8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.02.22274436

ABSTRACT

Background: The rapid worldwide spread of the mildly pathogenic SARS-CoV-2 Omicron variant has led to the suggestion that it will induce levels of collective immunity that will help putting an end to the COVID19 pandemics. Methods: Convalescent serums from non-hospitalized individuals previously infected with Alpha, Delta or Omicron BA.1 SARS-CoV-2 or subjected to a full mRNA vaccine regimen were evaluated for their ability to neutralize a broad panel of SARS-CoV-2 variants. Findings: Prior vaccination or infection with the Alpha or to a lesser extent Delta strains conferred robust neutralizing titers against most variants, albeit more weakly against Beta and even more Omicron. In contrast, Omicron convalescent serums only displayed low level of neutralization activity against the cognate virus and were unable to neutralize other SARS-CoV-2 variants. Interpretation: Moderately symptomatic Omicron infection is only poorly immunogenic and does not represent a substitute for vaccination.


Subject(s)
COVID-19
9.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.18.484873

ABSTRACT

The SARS-CoV-2 Omicron variant exhibits very high levels of transmission, pronounced resistance to authorized therapeutic human monoclonal antibodies and reduced sensitivity to vaccine-induced immunity. Here we describe P2G3, a human monoclonal antibody (mAb) isolated from a previously infected and vaccinated donor, which displays picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other current variants, and is thus markedly more potent than all authorized or clinically advanced anti-SARS-CoV-2 mAbs. Structural characterization of P2G3 Fab in complex with the Omicron Spike demonstrates unique binding properties to both down and up spike trimer conformations at an epitope that partially overlaps with the receptor-binding domain (RBD), yet is distinct from those bound by all other characterized mAbs. This distinct epitope and angle of attack allows P2G3 to overcome all the Omicron mutations abolishing or impairing neutralization by other anti-SARS-COV-2 mAbs, and P2G3 accordingly confers complete prophylactic protection in the SARS-CoV-2 Omicron monkey challenge model. Finally, although we could isolate in vitro SARS-CoV2 mutants escaping neutralization by P2G3 or by P5C3, a previously described broadly active Class 1 mAb, we found these viruses to be lowly infectious and their key mutations extremely rare in the wild, and we could demonstrate that P2G3/P5C3 efficiently cross-neutralized one another's escapees. We conclude that this combination of mAbs has great prospects in both the prophylactic and therapeutic settings to protect from Omicron and other VOCs.

10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.27.474250

ABSTRACT

ABSTRACT The Omicron (B.1.1.529) SARS-COV-2 was reported on November 24, 2021 and declared a variant of concern a couple of days later. 1,2 With its constellation of mutations acquired by this variant on its Spike glycoprotein and the speed at which this new variant has replaced the previously dominant variant Delta in South Africa and the United Kingdom, it is crucial to have atomic structural insights to reveal the mechanism of its rapid proliferation. Here we present a high-resolution cryo-EM structure of the Spike protein of the Omicron variant.

11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.06.21261419

ABSTRACT

ObjectivesThis cohort study including essential workers, assessed the{square}risk and incidence of SARS-CoV-2{square}infection during the second surge of COVID-19 according to baseline serostatus and occupational sector. MethodsEssential workers were selected from a seroprevalence survey cohort in Geneva, Switzerland and were linked to a state centralized registry compiling SARS-CoV-2 infections. Primary outcome was the number of virologically-confirmed infections from serological assessment (between May and September 2020) to January 25, 2021, according to baseline antibody status and stratified by three pre-defined occupational groups (occupations requiring sustained physical proximity, involving brief regular contact or others). Secondary outcomes included the incidence of infection. Results10457 essential workers were included (occupations requiring sustained physical proximity accounted for 3057 individuals, those involving regular brief contact, 3645, and 3755 workers were classified under "Other essential occupations"). After a follow-up period of over 27 weeks, 5 (0.6%) seropositive and 830 (8.5%) seronegative individuals had a positive SARS-CoV-2 test, with an incidence rate of 0.2 (95% CI 0.1 to 0.6) and 3.2 (95% CI 2.9 to 3.4) cases per person-week, respectively. Incidences were similar across occupational groups. Seropositive essential workers had a 93% reduction in the hazard (HR of 0.07, 95% CI 0.03 to 0.17) of having a positive test during follow-up with no significant between-occupational group difference. ConclusionsA ten-fold reduction in the hazard of being virologically tested positive was observed among anti-SARS-CoV-2 seropositive essential workers regardless of their sector of occupation, confirming the seroprotective effect of a previous SARS-CoV2 exposure at least six months after infection. Key messagesO_ST_ABSWhat is already known about this subject?C_ST_ABSRisk of SARS-CoV-2 reinfection is low in the general population and among healthcare workers. What are the new findings?A ten-fold reduction of risk of being virologically tested positive reinfection is observed among anti-SARS-CoV-2 seropositive essential workers of different activity sectors, regardless of their occupation-related risk of exposure. How might this impact on policy or clinical practice in the foreseeable future?Vaccination could be delayed in individuals with previous history of SARS-CoV-2 infection with serologic confirmation, regardless of their occupational exposure. These observations need to be confirmed for new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
12.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3844718

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies and reduced sensitivity to vaccine-induced immunity. Here, we screened B cells from COVID-19 donors and identified P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOC) identified to date. Structural characterization of P5C3 Fab in complex with the Spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 showed complete prophylactic protection in the SARS-CoV-2 infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.Funding: This CARE project has received funding from the Innovative MedicinesInitiative 2 Joint Undertaking (JU) under grant agreement No 101005077. The JU receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and BILL & MELINDA GATES FOUNDATION, GLOBAL HEALTH DRUG DISCOVERYINSTITUTE, UNIVERSITY OF DUNDEE. Furthermore, funding was also provided through the Lausanne University Hospital, through the Swiss Vaccine Research Institute to G.P., and through the EPFL COVID fund to D.T.Conflict of Interest: None to declare. Ethical Approval: Study design and use of subject samples were approved by the Institutional Review Board of the Lausanne University Hospital and the ‘Commission d’éthique du Canton de Vaud’ (CER-VD).


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.08.21255150

ABSTRACT

The detection of SARS-CoV-2-specific antibodies in the serum of an individual indicates prior infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral Spike are far more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, poorly flexible and potentially biohazardous. Here we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 Spike protein binding to the angiotensin converting enzyme 2 (ACE2) viral receptor. This high-throughput method matches the performance of the gold standard live virus infectious assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific IgG titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 Spike variants of concern (VOC), which is otherwise unpredictable even in individuals displaying robust neutralizing antibody responses. Profiling serum samples from 59 hospitalized COVID-19 patients, we found that although most had high activity against the 2019-nCoV Spike and to a lesser extent the B.1.1.7 variant, only 58% could efficiently neutralize a Spike derivative containing mutations present in the B.1.351 variant. In conclusion, we have developed an assay that has proven its clinical relevance in the large-scale evaluation of effective neutralizing antibody responses to VOC after natural infection and that can be applied to the characterization of vaccine-induced antibody responses and of the potency of human monoclonal antibodies. Once sentence summaryMultiplexed cell-free neutralization assay for quantitative assessment of serum antibody responses against Spike mutations in SARS-COV-2 variants


Subject(s)
COVID-19
14.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3820042

ABSTRACT

SARS-CoV-2 virions are surrounded by a lipid bilayer which contains membrane proteins such as Spike, responsible for target-cell binding and virus fusion, the envelope protein E and the accessory protein Orf3a. Here, we show that during SARS-CoV-2 infection, all three proteins become lipid modified, through action of the S- acyltransferase ZDHHC20. Particularly striking is the rapid acylation of Spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics and biochemical approaches, we show that this massive lipidation controls Spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid rich lipid nanodomains, in the early Golgi where viral budding occurs. ZDHHC20-mediated acylation allows the formation of viruses with enhanced fusion capacity and overall infectivity. Our study points towards S-acylating enzymes and lipid biosynthesis enzymes as novel therapeutic anti-viral targets.Funding: This work was supported by the Swiss National Science Foundation Corona Call, the CARIGEST foundation and the EPFL Corona Research task force to F.G.v.d.G. MD simulations were carried out on the Piz Daint computer at the Swiss Supercomputing Center (CSCS) thanks to access granted by PRACE Covid19 fast track project #17 (pr97) to M.D.P.Conflict of Interest: The authors declare no competing interests.


Subject(s)
COVID-19
15.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.16.21253710

ABSTRACT

Serologic studies have been critical in tracking the evolution of the COVID-19 pandemic. The reliability of serologic studies for quantifying the proportion of the population that have been infected depends on the extent of antibody decay as well as on assay performance in detecting both recent and older infections. Data on anti-SARS-CoV-2 antibodies persistence remain sparse, especially from infected individuals with few to no symptoms. In a cohort of mostly mild/asymptomatic SARS-CoV-2-infected individuals tested with three widely-used immunoassays, antibodies persisted for at least 8 months after infection, although detection depended on immunoassay choice, with one of them missing up to 40% of past infections. Simulations reveal that without appropriate adjustment for time-varying assay sensitivity, seroprevalence surveys may underestimate infection rates. As the immune landscape becomes more complex with naturally-infected and vaccinated individuals, assay choice and appropriate assay-performance-adjustment will become even more important for the interpretation of serologic studies.


Subject(s)
COVID-19
16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.14.435299

ABSTRACT

SARS-CoV-2 virions are surrounded by a lipid bilayer which contains membrane proteins such as Spike, responsible for target-cell binding and virus fusion, the envelope protein E and the accessory protein Orf3a. Here, we show that during SARS-CoV-2 infection, all three proteins become lipid modified, through action of the S- acyltransferase ZDHHC20. Particularly striking is the rapid acylation of Spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics and biochemical approaches, we show that this massive lipidation controls Spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid rich lipid nanodomains, in the early Golgi where viral budding occurs. ZDHHC20-mediated acylation allows the formation of viruses with enhanced fusion capacity and overall infectivity. Our study points towards S-acylating enzymes and lipid biosynthesis enzymes as novel therapeutic anti-viral targets.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.20.20196907

ABSTRACT

The clinical outcome of SARS-CoV-2 infections can range from asymptomatic to lethal, and is thought to be crucially shaped by the quality of the immune response which includes antibody titres and affinity for their targets. Using Microfluidic Antibody Affinity Profiling (MAAP), we determined the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 23 of whom were confirmed to be SARS-CoV-2-positive by PCR testing. We found that dissociation constants (Kd) of anti-RBD antibodies spanned more than two orders of magnitude from 80 pM to 25 nM, despite having similar antibody concentrations. Individual patients showed progressively higher antibody concentrations but constant Kd values, suggesting that affinities did not mature over time. 33 sera showed affinities higher than that of the CoV2 spike for its ACE2 receptor. Accordingly, addition of seropositive plasma to pre-formed spike-ACE2 receptor complexes led to their dissociation. Finally, we observed that the RBD of HKU1, OC43, and SARS-CoV coronaviruses, but not unrelated control proteins, were able to compete substantially with the RBD of SARS-CoV-2 in solution. Therefore, the affinity of total plasma immunoglobulins to SARS-CoV-2 is an indicator of the quality of the immune response to SARS-CoV-2, and may help select the most efficacious samples for therapeutic plasmapheresis.


Subject(s)
Severe Acute Respiratory Syndrome
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.14.20153536

ABSTRACT

We have determined SARS-CoV-2-specific antibody responses in a cohort of 96 individuals with acute infection and in 578 individuals enrolled in a seroprevalence population study in Switzerland including three groups, i.e. subjects with previous RT-PCR confirmed SARS-CoV-2 infections (n=90), positive patient contacts (n=177) and random selected subjects (n=311). SARS-CoV-2 antibody responses specific to the Spike (S), in the monomeric and native trimeric forms, and/or the nucleocapsid (N) proteins were equally sensitive in the acute infection phase. Interestingly, as compared to anti-S antibody responses, those against the N protein appear to wane in the post-infection and substantially underestimated the proportion of SARS-CoV-2 infections in the groups of patient positive contacts, i.e. 10.9 to 32.2% reduction and in the random selected general population, i.e. up to 45% reduction. The overall reduction in seroprevalence targeting only anti-N IgG antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was more sensitive as compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.02.20088898

ABSTRACT

BackgroundAssessing the burden of COVID-19 based on medically-attended case counts is suboptimal given its reliance on testing strategy, changing case definitions and the wide spectrum of disease presentation. Population-based serosurveys provide one avenue for estimating infection rates and monitoring the progression of the epidemic, overcoming many of these limitations. MethodsTaking advantage of a pool of adult participants from population-representative surveys conducted in Geneva, Switzerland, we implemented a study consisting of 8 weekly serosurveys among these participants and their household members older than 5 years. We tested each participant for anti-SARS-CoV-2-IgG antibodies using a commercially available enzyme-linked immunosorbent assay (Euroimmun AG, Lubeck, Germany). We estimated seroprevalence using a Bayesian regression model taking into account test performance and adjusting for the age and sex of Genevas population. ResultsIn the first three weeks, we enrolled 1335 participants coming from 633 households, with 16% <20 years of age and 53.6% female, a distribution similar to that of Geneva. In the first week, we estimated a seroprevalence of 3.1% (95% CI 0.2-5.99, n=343). This increased to 6.1% (95% CI 2.69.33, n=416) in the second, and to 9.7% (95% CI 6.1-13.11, n=576) in the third week. We found that 5-19 year-olds (6.0%, 95% CI 2.3-10.2%) had similar seroprevalence to 20-49 year olds (8.5%, 95%CI 4.99-11.7), while significantly lower seroprevalence was observed among those 50 and older (3.7%, 95% CI 0.99-6.0, p=0.0008). InterpretationAssuming that the presence of IgG antibodies is at least in the short-term associated with immunity, these results highlight that the epidemic is far from burning out simply due to herd immunity. Further, no differences in seroprevalence between children and middle age adults are observed. These results must be considered as Switzerland and the world look towards easing restrictions aimed at curbing transmission.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL